THE EUROPEAN PHYSICAL JOURNAL A

© Società Italiana di Fisica Springer-Verlag 2001

Short note

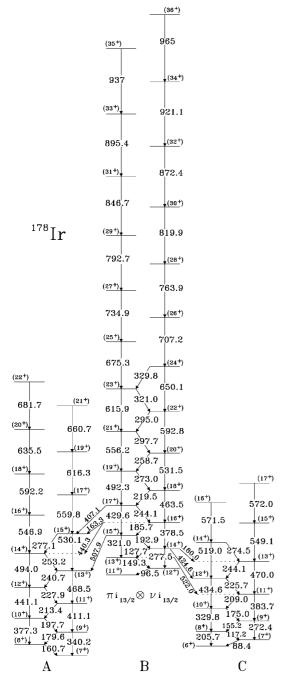
Signature inversion in $\pi i_{13/2} \otimes u i_{13/2}$ structure in 178 Ir

D. Hojman^{1,2,3,a}, M.A. Cardona^{1,3}, D.R. Napoli⁵, S.M. Lenzi⁶, C.A. Ur⁶, G. Lo Bianco⁷, C.M. Petrache⁷, M. Axiotis⁵, D. Bazzacco⁶, J. Davidson^{2,4}, M. Davidson^{2,4}, M. De Poli⁵, G. de Angelis⁵, E. Farnea⁵, T. Kroell⁶, S. Lunardi⁶, N. Marginean⁵, T. Martínez⁵, R. Menegazzo⁶, B. Quintana⁶, and C. Rossi Alvarez⁶

- ¹ Departamento de Física, CNEA, Buenos Aires, Argentina
- ² CONICET, Argentina
- ³ Universidad Nacional de General San Martín, Argentina
- ⁴ Departamento de Física, Universidad de Buenos Aires, Argentina
- ⁵ INFN, Laboratori Nazionali di Legnaro, Italy
- ⁶ Dipartimento di Fisica and INFN, Padova, Italy
- ⁷ Dipartimento di Matematica e Fisica, Università di Camerino, Italy

Received: 13 December 2000 / Revised version: 13 March 2001 Communicated by D. Schwalm

Abstract. High-spin states in 178 Ir were investigated by means of in-beam γ -ray spectroscopy techniques using the multidetector array GASP. Excited states of 178 Ir were populated through the 159 Tb(24 Mg, 5n) fusion-evaporation reaction at $E(^{24}$ Mg) = 131–141 MeV. Several rotational bands were observed. Among them, the $\pi i_{13/2} \otimes \nu i_{13/2}$ structure has been identified up to spin 36 \hbar . This band exhibits an anomalous signature splitting and a signature inversion around spin 25 \hbar .


PACS. 21.10.Re Collective levels – 23.20.Lv γ transitons and level energies – 27.70.+q $150 \le A \le 189$

Recently, spins of $\pi h_{9/2} \otimes \nu i_{13/2}$ bands have been established relative to other bands in $^{162,164}{\rm Tm}$ [1], $^{172,174}{\rm Ta}$ [2,1], and ¹⁷⁶Re [3]. With these spin assignments the favored states have even spins ($\alpha = 0$) up to high-spin values where a change of phase is produced. This is contrary to the expected favored signature in odd-odd nuclei (α_{p-n}^{t}) corresponding to the coupling between the favored signature of both proton $(\alpha_{\rm p}^{\rm f})$ and neutron $(\alpha_{\rm n}^{\rm f})$ orbitals, which for the $\pi h_{9/2} \otimes \nu i_{13/2}$ band corresponds to $\alpha_{p-n}^f =$ $\alpha_{\rm p}^{\rm f} + \alpha_{\rm n}^{\rm f} = 1/2 + 1/2 = 1$ (odd-spin values). The occurrence of this phenomenon has been found in bands of high-jparentage throughout the chart of nuclides, concerning the $\pi g_{9/2} \otimes \nu g_{9/2}$, $\pi h_{11/2} \otimes \nu h_{11/2}$, $\pi h_{11/2} \otimes \nu i_{13/2}$, and $\pi h_{9/2} \otimes \nu i_{13/2}$ configurations. Among other explanations [4,5], a residual proton-neutron interaction in the framework of the Particle Rotor Model has been proposed [1, 3,6]. Using this interaction, good agreement was obtained for the $\pi h_{9/2}$ $(1/2^-[541]) \otimes \nu i_{13/2}$ $(5/2^+[642], 7/2^+[633])$ structures [1,3], for the phase of the staggering and for the inversion point. Since the effect of the p-n interaction depends on the particle and hole character of the participating quasiparticles, a similar analysis can be performed

for the $\pi i_{13/2}$ $(1/2^+[660]) \otimes \nu i_{13/2}$ $(7/2^+[633])$ structure. Proton $\pi i_{13/2}$ $(1/2^+[660])$ bands are strongly populated in 177,179 Ir [7,8] and the same occurs for neutron $\nu i_{13/2}$ bands in 177,179 Os [9]. In this context we have performed an experiment to search for high-spin states in 178 Ir. Previous to this work, only little information about low-spin states in 178 Ir was known from decay studies [10]. During the course of the present investigation some results about in-beam studies and signature inversion in the $\pi h_{11/2} \otimes \nu i_{13/2}$ and $\pi h_{9/2} \otimes \nu i_{13/2}$ structures became available [11].

High-spin states in $^{178} \rm Ir$ were populated through the $^{159} \rm Tb(^{24} \rm Mg,~5n)$ fusion-evaporation reaction at $E(^{24} \rm Mg)=131,~133,~136$ and 141 MeV. The target consisted of three self-supported 380 $\mu \rm g/cm^2$ stacked Tb foils. The beam was provided by the Tandem XTU accelerator of Legnaro and γ -rays emitted by the evaporation residues were detected using the GASP array [12], which consisted of 40 Compton suppressed large volume Ge detectors and a multiplicity filter of 80 bismuth germanate (BGO) elements, providing the sum-energy and γ -ray multiplicity used to select the different reaction channels. Events were collected when at least three suppressed Ge and four inner multiplicity filter detectors were fired. With this condition a total of $\approx 1.7 \times 10^9$ events were recorded. We

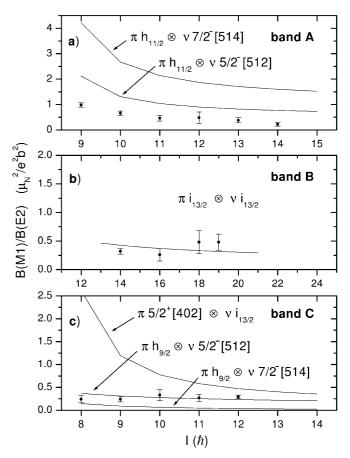

 $^{^{\}mathrm{a}}$ e-mail: hojman@tandar.cnea.gov.ar

Fig. 1. Partial level scheme of 178 Ir.

constructed fully symmetrized E_{γ} - E_{γ} - E_{γ} cubes, E_{γ} - E_{γ} -multiplicity cubes, and angular correlation matrices for different time, multiplicity, sum-energy, beam energy and detector position conditions.

Several rotational bands have been assigned to ¹⁷⁸Ir on the basis of excitation functions, multiplicity distributions (well separated for channels differing in one evaporated neutron), and coincidences with Ir X-rays. Among these bands, two correspond to those reported in ref. [11]. Figure 1 shows a partial level scheme displaying only the

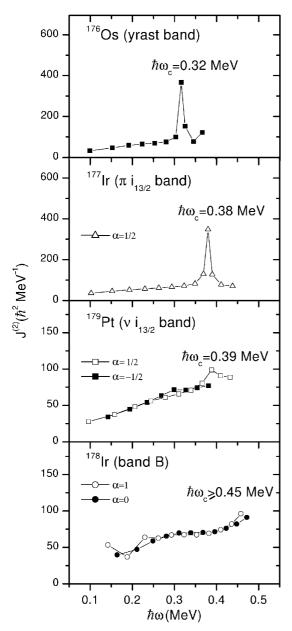


Fig. 2. Experimental and calculated B(M1)/B(E2) ratios for the bands in 178 Ir, reported in the present work. For the $\pi h_{11/2} \otimes \nu 7/2^-[514]$ configuration, in a), spins must be increased by $1\hbar$.

bands of interest in the present work. The bands reported by Zhang et al. [11] are not included in fig. 1.

Band A exhibits an effective projection quantum number [13] $K_{\rm eff}=7.5$. This high value corresponds to a case in which both proton and neutron orbitals are weakly affected by the Coriolis interaction, resulting in $K_{\rm eff}\approx K=\Omega_{\rm p}+\Omega_{\rm n}$. Two configurations, constructed from the proton and neutron orbitals lying close to the ground state in neighboring odd nuclei: $\pi h_{11/2}(9/2^-[514])\otimes\nu 5/2^-[512]$ ($K^\pi=7^+$) and $\pi h_{11/2}$ ($9/2^-[514]$) $\otimes\nu 7/2^-[514]$ ($K^\pi=8^+$), have a K value close to $K_{\rm eff}$ and satisfy the above condition. Theoretical estimates of the B(M1)/B(E2) ratios [2,14] can be compared in fig. 2a) with the experimental values, resulting in a better agreement for the $\pi h_{11/2}\otimes\nu 5/2^-[512]$ configuration, which is assigned to band A. With this assignment band A has a positive parity and a bandhead spin I=7.

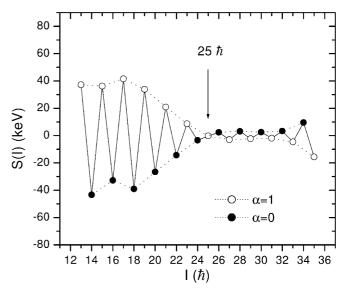

The transitions linking the three bands fix the positive parity of bands B and C. In the case of the 180.0 keV linking transition, the assumed M1+E2 character is based on intensity balances. For band C, we extract a $K_{\rm eff}=2.1$, which is too small except for a compressed band. This compression is due to the presence of a high-j, low- Ω orbital in its structure. The configurations satisfying these

Fig. 3. Experimental dynamical moments of inertia as a function of the rotational frequency corresponding to the yrast band in $^{176}\mathrm{Os}$, $\pi i_{13/2}$ band in $^{177}\mathrm{Ir}$, $\nu i_{13/2}$ band in $^{179}\mathrm{Pt}$, and to band B in $^{178}\mathrm{Ir}$.

conditions and not assigned to other bands in the nucleus are: $\pi5/2^+[402] \otimes \nu i_{13/2}, \pi h_{9/2} \otimes \nu 5/2^-[512],$ and $\pi h_{9/2} \otimes \nu 7/2^-[514].$ In fig. 2c) we observe a very good agreement between experimental and calculated B(M1)/B(E2) ratios for the second configuration, which is assigned to band C. We note that a similar band has been observed in ¹⁸⁰Ir [15], where a $I^{\pi}=6^+$ for the bandhead was unambiguously fixed and assigned to the same structure.

As mentioned before, band B has a positive parity and their spins are established relative to band A. The assignment of the $\pi i_{13/2} \otimes \nu i_{13/2}$ structure to this band is

Fig. 4. Variation of the energy difference S(I) = E(I) - E(I-1) - [E(I+1) - E(I) + E(I-1) - E(I-2)]/2 between levels of band B in ¹⁷⁸Ir as a function of the angular momentum. The signature inversion point is indicated with an arrow.

supported by several features. Calculated and experimental B(M1)/B(E2) ratios are in very good agreement, see fig. 2b). The extracted alignment for this band, $i \approx 8.5\hbar$, is compatible with the sum of those extracted from the $\pi i_{13/2}$ and $\nu i_{13/2}$ bands in neighboring odd nuclei, $i_{\rm p} + i_{\rm n} \approx$ $5\hbar+4\hbar=9\hbar$. In addition, we plot in fig. 3 the experimental dynamical moments of inertia as a function of the rotational frequency corresponding to the yrast band in $^{176}\mathrm{Os}$ [16], $\pi i_{13/2}$ band in $^{177}\mathrm{Ir}$ [7], $\nu i_{13/2}$ band in $^{179}\mathrm{Pt}$ [17], and to band B in 178 Ir. The first band shows a band-crossing at $\hbar\omega_{\rm c} = 0.32$ MeV, corresponding to the energy needed to break an $i_{13/2}$ neutron pair. The delay in the crossing frequency, with respect to this value, observed in the $\pi i_{13/2}$ band in ¹⁷⁷Ir $(\delta \hbar \omega_{\rm c} = \hbar \omega_{\rm c} (^{177}\text{Ir}) - \hbar \omega_{\rm c} (^{176}\text{Os}) =$ $0.38\,\mathrm{MeV} - 0.32\,\mathrm{MeV} = 0.06\,\mathrm{MeV}$) can be explained in terms of a deformation driving effect induced by the $\pi i_{13/2}$ orbital [7]. On the other hand, the delay in the crossing frequency observed in the $\nu i_{13/2}$ band in ¹⁷⁹Pt $(\delta\hbar\omega_c = 0.39 \text{ MeV} - 0.32 \text{ MeV} = 0.07 \text{ MeV})$ is explained as a blocking effect. ¹⁷⁹Pt has been used instead of its isotone ¹⁷⁷Os because there are not data to determine the band-crossing frequency for the $\nu i_{13/2}$ band in this nucleus. For band B in ¹⁷⁸Ir, the delay in the band-crossing, $\delta\hbar\omega_{\rm c} \geq 0.45~{\rm MeV} - 0.32~{\rm MeV} = 0.13~{\rm MeV}$ is compatible with the sum of the delays in the neighboring oddmass nuclei, 0.06 MeV + 0.07 MeV = 0.13 MeV, reflecting both effects, in agreement with the assigned structure. Finally, in-band $\Delta I = 1$ transitions have DCO ratios ≈ 0.5 (as an example, for the 185.7 keV transition we obtain DCO = 0.49(8)), which are consistent, in the GASP geometry [2], with $\Delta I = 1, \delta \leq 0$ transitions, as expected for this structure.

For band B we plot, in fig. 4, the variation of the energy difference S(I) = E(I) - E(I-1) - [E(I+1) -

E(I) + E(I-1) - E(I-2)/2 as a function of the spin. Here we can see that below $I = 25\hbar$, where a change of phase occurs, even-spin ($\alpha = 0$) states are anomalously favored, and beyond this spin value odd-spin ($\alpha = 1$) states become normally favored. This behavior, similar to the $\pi h_{9/2} \otimes \nu i_{13/2}$ case, can be understood in the framework of the Particle Rotor Model with p-n interaction. For the $\pi i_{13/2} \otimes \nu i_{13/2}$ configuration the proton-particle - neutronhole matrix elements of the residual zero-range interaction have similar values for the J = 5 - 12 states, while the value for J = 13 is strongly repulsive, so the J = 13component is practically excluded from the spectrum of intrinsic excitations. In this context, the valence nucleons couple to an intrinsic angular momentum J < 12. For I > 13, even-spin states with I and odd-spin states with I-1 have mainly the same components, J=12 and R = I - 12 (R = even is the core angular momentum) and consequently similar rotational energies. Then, even-spin states become favored if compared with the normal rotational sequence $E(I) \propto I(I+1)$. When the rotational energy required to go from one state to the next one starts to become comparable to the intrinsic (p-n interaction) energy required to maximally align the odd proton and neutron to J = 13, this value become available for the intrinsic excitations and the change of phase occurs. In this case, one returns to a regime dominated by the Coriolis interaction and the phase of the staggering will become the "normal" one (i.e. the odd-spin sequence will become favored).

As pointed out before signature inversion in the $\pi h_{11/2} \otimes \nu i_{13/2}$ and $\pi h_{9/2} \otimes \nu i_{13/2}$ structures in ¹⁷⁸Ir has been reported by Zhang *et al.* [11]. The authors show a systematic analysis of the inversion point as a function of the proton and neutron numbers, for the last mentioned structure. A detailed discussion of signature inversion in these bands is left for a more comprehensive publication.

To conclude, we report in this work three new rotational bands in $^{178}{\rm Ir},$ whose configurations are assigned from rotational model arguments. Among these bands that one corresponding to the $\pi i_{13/2} \otimes \nu i_{13/2}$ structure exhibits anomalously favored $\alpha=0$ states below $I=25\hbar$ where a change of phase occurs. This phenomenon is interpreted in the framework of the Particle Rotor Model with residual proton-neutron interaction.

References

- 1. R.A. Bark et al., Phys. Lett. B 406, 193 (1997).
- 2. D. Hojman et al., Phys. Rev. C 61, 064322 (2000).
- 3. M.A. Cardona et al., Phys. Rev. C 59, 1298 (1999).
- J.A. Pinston et al., Phys. Lett. B 137, 47 (1984), and references therein.
- 5. I. Hamamoto, Phys. Lett. B 235, 221 (1990).
- 6. N. Tajima, Nucl. Phys. A 572, 365 (1994).
- 7. R.A. Bark et al., Phys. Rev. C 52, R450 (1995).
- 8. H.-Q. Jin et al., Phys. Rev. C 53, 2106 (1996).
- 9. G.D. Dracoulis et al., Nucl. Phys. A 401, 490 (1983).
- 10. E. Browne, Nucl. Data Sheets 72, 221 (1994).
- 11. Y.H. Zhang et al., Eur. Phys. J. A 8, 439 (2000).
- D. Bazzacco, Proceedings of the International Conference on Nuclear Structure at High Angular Momentum, Ottawa, 1992, edited by J. Wadington, D. Ward, Vol. 2 (AECL 10613) p. 376.
- 13. D. Hojman et al., Phys. Rev. C 45, 90 (1992).
- F. Dönau, S. Frauendorf, Proceedings of the Conference on High Angular Momentum Properties of Nuclei, Oak Ridge, USA, 1982, edited by N. Johnson (Harwood Academic, Chur, 1982) p. 143.
- 15. Y.H. Zhang et al., Eur. Phys. J. A 5, 345 (1999).
- 16. G.D. Dracoulis et al., Nucl. Phys. A 383, 119 (1982).
- 17. C. Baglin, Nucl. Data Sheets **72**, 617 (1994).