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Short note

Signature inversion in πi13/2 ⊗ νi13/2 structure in 178Ir
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Abstract. High-spin states in 178Ir were investigated by means of in-beam γ-ray spectroscopy techniques
using the multidetector array GASP. Excited states of 178Ir were populated through the 159Tb(24Mg, 5n)
fusion-evaporation reaction at E(24Mg) = 131–141 MeV. Several rotational bands were observed. Among
them, the πi13/2 ⊗ νi13/2 structure has been identified up to spin 36 h̄. This band exhibits an anomalous
signature splitting and a signature inversion around spin 25 h̄.

PACS. 21.10.Re Collective levels – 23.20.Lv γ transitons and level energies – 27.70.+q 150 ≤ A ≤ 189

Recently, spins of πh9/2 ⊗ νi13/2 bands have been es-
tablished relative to other bands in 162,164Tm [1], 172,174Ta
[2,1], and 176Re [3]. With these spin assignments the fa-
vored states have even spins (α = 0) up to high-spin val-
ues where a change of phase is produced. This is con-
trary to the expected favored signature in odd-odd nuclei
(αf

p-n) corresponding to the coupling between the favored
signature of both proton (αf

p) and neutron (αf
n) orbitals,

which for the πh9/2 ⊗ νi13/2 band corresponds to αf
p-n =

αf
p+αf

n = 1/2+1/2 = 1 (odd-spin values). The occurrence
of this phenomenon has been found in bands of high-j
parentage throughout the chart of nuclides, concerning
the πg9/2 ⊗ νg9/2, πh11/2 ⊗ νh11/2, πh11/2 ⊗ νi13/2, and
πh9/2 ⊗ νi13/2 configurations. Among other explanations
[4,5], a residual proton-neutron interaction in the frame-
work of the Particle Rotor Model has been proposed [1,
3,6]. Using this interaction, good agreement was obtained
for the πh9/2 (1/2−[541]) ⊗ νi13/2 (5/2+[642],7/2+[633])
structures [1,3], for the phase of the staggering and for
the inversion point. Since the effect of the p-n interaction
depends on the particle and hole character of the partici-
pating quasiparticles, a similar analysis can be performed
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for the πi13/2 (1/2+[660]) ⊗ νi13/2 (7/2+[633]) structure.
Proton πi13/2 (1/2+[660]) bands are strongly populated
in 177,179Ir [7,8] and the same occurs for neutron νi13/2

bands in 177,179Os [9]. In this context we have performed
an experiment to search for high-spin states in 178Ir. Pre-
vious to this work, only little information about low-spin
states in 178Ir was known from decay studies [10]. During
the course of the present investigation some results about
in-beam studies and signature inversion in the πh11/2 ⊗
νi13/2 and πh9/2 ⊗ νi13/2 structures became available [11].

High-spin states in 178Ir were populated through
the 159Tb(24Mg, 5n) fusion-evaporation reaction at
E(24Mg) = 131, 133, 136 and 141 MeV. The target con-
sisted of three self-supported 380 µg/cm2 stacked Tb foils.
The beam was provided by the Tandem XTU accelerator
of Legnaro and γ-rays emitted by the evaporation residues
were detected using the GASP array [12], which consisted
of 40 Compton suppressed large volume Ge detectors and
a multiplicity filter of 80 bismuth germanate (BGO) el-
ements, providing the sum-energy and γ-ray multiplicity
used to select the different reaction channels. Events were
collected when at least three suppressed Ge and four in-
ner multiplicity filter detectors were fired. With this con-
dition a total of ≈ 1.7 × 109 events were recorded. We
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Fig. 1. Partial level scheme of 178Ir.

constructed fully symmetrized Eγ-Eγ-Eγ cubes, Eγ-Eγ-
multiplicity cubes, and angular correlation matrices for
different time, multiplicity, sum-energy, beam energy and
detector position conditions.

Several rotational bands have been assigned to 178Ir
on the basis of excitation functions, multiplicity distribu-
tions (well separated for channels differing in one evapo-
rated neutron), and coincidences with Ir X-rays. Among
these bands, two correspond to those reported in ref. [11].
Figure 1 shows a partial level scheme displaying only the

Fig. 2. Experimental and calculated B(M1)/B(E2) ratios
for the bands in 178Ir, reported in the present work. For the
πh11/2 ⊗ ν7/2−[514] configuration, in a), spins must be in-
creased by 1h̄.

bands of interest in the present work. The bands reported
by Zhang et al. [11] are not included in fig. 1.

Band A exhibits an effective projection quantum num-
ber [13] Keff = 7.5. This high value corresponds to a case
in which both proton and neutron orbitals are weakly af-
fected by the Coriolis interaction, resulting in Keff ≈ K =
Ωp + Ωn . Two configurations, constructed from the pro-
ton and neutron orbitals lying close to the ground state
in neighboring odd nuclei: πh11/2(9/2−[514])⊗ ν5/2−[512]
(Kπ = 7+) and πh11/2 (9/2−[514]) ⊗ ν7/2−[514] (Kπ =
8+), have a K value close to Keff and satisfy the above
condition. Theoretical estimates of the B(M1)/B(E2) ra-
tios [2,14] can be compared in fig. 2a) with the experimen-
tal values, resulting in a better agreement for the πh11/2

⊗ ν5/2−[512] configuration, which is assigned to band A.
With this assignment band A has a positive parity and a
bandhead spin I = 7.

The transitions linking the three bands fix the positive
parity of bands B and C. In the case of the 180.0 keV link-
ing transition, the assumed M1+E2 character is based on
intensity balances. For band C, we extract a Keff = 2.1,
which is too small except for a compressed band. This
compression is due to the presence of a high-j, low-Ω or-
bital in its structure. The configurations satisfying these



D. Hojman et al.: Signature inversion in πi13/2 ⊗ νi13/2 structure in 178Ir 247

Fig. 3. Experimental dynamical moments of inertia as a func-
tion of the rotational frequency corresponding to the yrast
band in 176Os, πi13/2 band in 177Ir, νi13/2 band in 179Pt, and
to band B in 178Ir.

conditions and not assigned to other bands in the nucleus
are: π5/2+[402] ⊗ νi13/2, πh9/2 ⊗ ν5/2−[512], and πh9/2

⊗ ν7/2−[514]. In fig. 2c) we observe a very good agree-
ment between experimental and calculated B(M1)/B(E2)
ratios for the second configuration, which is assigned to
band C. We note that a similar band has been observed
in 180Ir [15], where a Iπ = 6+ for the bandhead was un-
ambiguously fixed and assigned to the same structure.

As mentioned before, band B has a positive parity and
their spins are established relative to band A. The as-
signment of the πi13/2 ⊗ νi13/2 structure to this band is

Fig. 4. Variation of the energy difference S(I) = E(I)−E(I−
1)− [E(I+1)−E(I)+E(I −1)−E(I −2)]/2 between levels of
band B in 178Ir as a function of the angular momentum. The
signature inversion point is indicated with an arrow.

supported by several features. Calculated and experimen-
tal B(M1)/B(E2) ratios are in very good agreement, see
fig. 2b). The extracted alignment for this band, i ≈ 8.5h̄,
is compatible with the sum of those extracted from the
πi13/2 and νi13/2 bands in neighboring odd nuclei, ip+in ≈
5h̄+4h̄ = 9h̄. In addition, we plot in fig. 3 the experimental
dynamical moments of inertia as a function of the rota-
tional frequency corresponding to the yrast band in 176Os
[16], πi13/2 band in 177Ir [7], νi13/2 band in 179Pt [17], and
to band B in 178Ir. The first band shows a band-crossing
at h̄ωc = 0.32 MeV, corresponding to the energy needed
to break an i13/2 neutron pair. The delay in the cross-
ing frequency, with respect to this value, observed in the
πi13/2 band in 177Ir (δh̄ωc = h̄ωc(177Ir) − h̄ωc(176Os) =
0.38MeV − 0.32 MeV = 0.06 MeV) can be explained
in terms of a deformation driving effect induced by the
πi13/2 orbital [7]. On the other hand, the delay in the
crossing frequency observed in the νi13/2 band in 179Pt
(δh̄ωc = 0.39 MeV − 0.32 MeV = 0.07 MeV) is explained
as a blocking effect. 179Pt has been used instead of its iso-
tone 177Os because there are not data to determine the
band-crossing frequency for the νi13/2 band in this nu-
cleus. For band B in 178Ir, the delay in the band-crossing,
δh̄ωc ≥ 0.45 MeV − 0.32 MeV = 0.13 MeV is compat-
ible with the sum of the delays in the neighboring odd-
mass nuclei, 0.06 MeV + 0.07 MeV = 0.13 MeV, reflecting
both effects, in agreement with the assigned structure. Fi-
nally, in-band ∆I = 1 transitions have DCO ratios ≈ 0.5
(as an example, for the 185.7 keV transition we obtain
DCO = 0.49(8)), which are consistent, in the GASP ge-
ometry [2], with ∆I = 1, δ ≤ 0 transitions, as expected
for this structure.

For band B we plot, in fig. 4, the variation of the en-
ergy difference S(I) = E(I) − E(I − 1) − [E(I + 1) −
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E(I) + E(I − 1) − E(I − 2)]/2 as a function of the spin.
Here we can see that below I = 25h̄, where a change of
phase occurs, even-spin (α = 0) states are anomalously fa-
vored, and beyond this spin value odd-spin (α = 1) states
become normally favored. This behavior, similar to the
πh9/2 ⊗ νi13/2 case, can be understood in the framework
of the Particle Rotor Model with p-n interaction. For the
πi13/2⊗νi13/2 configuration the proton-particle - neutron-
hole matrix elements of the residual zero-range interaction
have similar values for the J = 5 − 12 states, while the
value for J = 13 is strongly repulsive, so the J = 13
component is practically excluded from the spectrum of
intrinsic excitations. In this context, the valence nucle-
ons couple to an intrinsic angular momentum J ≤ 12.
For I ≥ 13, even-spin states with I and odd-spin states
with I − 1 have mainly the same components, J = 12 and
R = I − 12 (R= even is the core angular momentum) and
consequently similar rotational energies. Then, even-spin
states become favored if compared with the normal rota-
tional sequence E(I) ∝ I(I + 1). When the rotational en-
ergy required to go from one state to the next one starts
to become comparable to the intrinsic (p-n interaction)
energy required to maximally align the odd proton and
neutron to J = 13, this value become available for the in-
trinsic excitations and the change of phase occurs. In this
case, one returns to a regime dominated by the Coriolis
interaction and the phase of the staggering will become
the “normal” one (i.e. the odd-spin sequence will become
favored).

As pointed out before signature inversion in the
πh11/2⊗ νi13/2 and πh9/2 ⊗ νi13/2 structures in 178Ir has
been reported by Zhang et al. [11]. The authors show a
systematic analysis of the inversion point as a function of
the proton and neutron numbers, for the last mentioned
structure. A detailed discussion of signature inversion in
these bands is left for a more comprehensive publication.

To conclude, we report in this work three new rota-
tional bands in 178Ir, whose configurations are assigned
from rotational model arguments. Among these bands
that one corresponding to the πi13/2 ⊗ νi13/2 structure
exhibits anomalously favored α = 0 states below I = 25h̄
where a change of phase occurs. This phenomenon is in-
terpreted in the framework of the Particle Rotor Model
with residual proton-neutron interaction.
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